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a b s t r a c t

A damage identification approach using train-induced responses and sensitivity

analysis is proposed for the nondestructive evaluation of railway bridges. The dynamic

responses of railway bridges under moving trains composed of multiple vehicles are

calculated by a train–bridge dynamic interaction analysis. Using the stiffness variation

induced bridge responses to structural damage are analyzed and the sensitivity

matrices are formed. By comparing the theoretical measurement responses of one

measurement point in two different states, the damage indices of all elements are

updated iteratively, and finally the absolute or relative damage is located and

quantified. A three-span continuous bridge numerical example proves that the

proposed dynamic response sensitivity-based FE model updating damage identification

method is not only effective to detect local damage of railway bridges, but also

insensitive to the track irregularity and the measurement noise.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Damage in bridges can result in changes of their mechanical properties such as mass, stiffness, damping and boundary
conditions, which can be reflected by changes in their global dynamic characteristics. The damage identification based on
the global dynamic characteristics of structures has become currently a topic of very active research in civil and
mechanical engineering. Various damage identification methods have been proposed by utilizing such parameters as
natural frequencies [1,2], mode shapes [3,4], curvature mode shapes [5], modal damping [6], modal strain energies [7],
frequency response functions [8] and stiffness or flexibility sensitivities [9,10]. Doebling et al. [11] comprehensively
reviewed the literature, focusing on frequency-domain damage detection algorithms for linear structures. Zou et al. [12]
summarized the methods on vibration-based damage detection and health monitoring for composite structures. Housner
et al. [13] gave a good summary on state-of-the-art methods in control and health monitoring of civil engineering
structures.

The fundamental principle of these methods is to compare the structural behavior in the damaged state with that in the
undamaged state. In order to detect the damage locations and to determine the damage extents, it is necessary to model
the undamaged state of the structure. A reliable method can be obtained by comparing the experimentally measured data
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of a structure in its initial state with those predicted by an initial mathematical model [14,15]. However, for an accurate
model based damage assessment, often a lot of sensors and manual processing are needed, jeopardizing the online damage
detection of structures in service.

From the view of structural online health monitoring, it is desirable to locate and quantify the damage directly from the
time-domain dynamic responses of bridges under operating loads such as running vehicles. For this purpose, much
research has been conducted. Liu and Chen [16] presented an inverse technique for identifying stiffness distribution in
structures using the structural dynamic responses, where the sensitivity matrices of structural displacements with respect
to the stiffness factors were calculated by Newton’s method. Cattarius and Inman [17] detected the damage in smart
structures from the time histories of structural responses. Chen and Li [18] and Shi et al. [19] proposed methods to identify
both structural parameters and input loads from output-only measurements. Ling et al. [20] proposed an element level
system identification method with unknown input with Rayleigh damping. Lu and Law [21, and Lu et al. [22] studied the
features of dynamic response sensitivities under sinusoidal, impulsive and random excitations, and then used them in the
structural damage identification. For large civil structures such as long-span bridges, it is usually difficult to excite them by
impulsive or sinusoidal loads, so the passing vehicles are more suitable as excitation sources. Majumder and Manohar [23]
proposed a time-domain approach for damage detection in bridges using both the vehicle response and the bridge
response, in which the vehicle was considered as a single degree-of-freedom system with sprung and unsprung masses.
Zhu and Law [24] studied the damage detection of simply supported concrete bridges, in which the moving forces and the
damage indices are identified at the same time from the measured responses of multiple points.

In the above references, none is considering the damage detection of railway bridges from the dynamic responses due to
passing trains composed of multiple vehicles. All papers also presume prior knowledge of the FE model in the undamaged
state.

In this paper, a detailed train–bridge dynamic interaction model is established, in which the train is composed of
multiple 4-axle vehicles with 10 degrees-of-freedom and the bridge is discretized by beam elements. The train-induced
responses of the bridge in the damaged state are used as input data for damage identification and the response sensitivities
with respect to the damage indices of the elements are calculated to establish the sensitivity matrix. Using the error
between the measured response and the computed one as a minimization criterion, the sensitivity equation is solved by
the least-squares method, and then the damage is located and quantified with the finite element model updating
technique. In the proposed method, the influences of measurement noise and track irregularities on the analysis results are
discussed. An example of a three-span continuous bridge numerical example proves that the local damage of railway
bridges can be effectively identified using the train-induced response of a single measurement point.

2. Forward problem solution for train-induced bridge response

Since only the vertical response of the bridge is used in this study, a two-dimensional dynamic model of the train–
bridge interaction system, composed of a train subsystem and a bridge subsystem, is established in the X–Z plane. The two
subsystems are linked by the assumed wheel–track interactions.

The train subsystem model adopts the following assumptions:
(1)
 The train runs on the bridge at a constant speed.

(2)
 The train can be modeled as several independent vehicle elements. Each vehicle element is composed of a car body,

two bogies, four wheel-sets and the spring–damper suspensions between the components.

(3)
 The car body, bogies and wheel-sets in each vehicle element are regarded as rigid components, neglecting their elastic

deformations.

(4)
 The connections between a bogie and its wheel-sets are characterized by the first suspension system, which consists of

springs and dampers with identical properties.

(5)
 The connections between a car body and its bogies are characterized by the second suspension system, which consists

of springs and dampers with identical properties.

(6)
 The springs in vehicle elements are all linear, and the dampers all viscous.

(7)
 Each car body or bogie has 2 degrees-of-freedom in the Z and RY directions, while the longitudinal movement in the X

direction is neglected.
Only the degree-of-freedom in the Z direction for the wheel-set is considered, thus each 4-axle vehicle element has 10
degrees-of-freedom (see Fig. 1).

Two-dimensional beam elements are used to model the bridge. In structural dynamics, the determination of the
damping matrix is often difficult. The usual solution for this problem is to adopt the classical Rayleigh damping theory [25],
in which the damping matrix Cb is expressed as a linear combination of the bridge mass matrix Mb and the stiffness matrix
Kb:

Cb ¼ aMbþbKb (1)

with a¼ 4pððx1f1f 2
2�x2f 2

1 f2Þ=ðf
2
2�f 2

1 ÞÞ; b¼ ð1=pÞððx2f2�x1f1Þ=ðf
2
2�f 2

1 ÞÞ.where f1 and f2 are the first- and the second-order
natural frequencies (Hz). x1 and x2 are the first- and the second-order damping ratios of the bridge, respectively.
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Fig. 1. Train–bridge interaction model.
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In theory, any two natural frequencies can be used to calculate a and b. Usually in practice, the high-order frequencies
are difficult to measure, while the low-order frequencies can be obtained precisely, therefore the first- and the second-
order natural frequencies are used to calculate the combination coefficients a and b.

In the vehicle–bridge interaction dynamics, one of the assumptions is that the wheel-sets never detach from the bridge
and the only connection between them is the track irregularity. The movements of the wheel-sets and the bridge couple
together through the track irregularity with the following equations:

Zwijl ¼ ZbðxijlÞþZsðxijlÞ (2a)

_Zwijl ¼
_ZbðxijlÞþ

_ZsðxijlÞ (2b)

€Zwijl ¼
€ZbðxijlÞþ

€ZsðxijlÞ (2c)

where xijl is the position of the lth wheel-set of the jth bogie in the ith vehicle, Zb, _ZbðxijlÞ and €ZbðxijlÞ are, respectively, the
displacement, velocity and acceleration of the bridge; Zw, _Zw and €Zw are, respectively, the displacement, velocity and
acceleration of the wheel-set; Zs, _Zs and €Zs are, respectively, the displacement, velocity and acceleration irregularities of the
track on the bridge. Their computation method is described in Section 6.2.

The equations of the coupled motion of the train–bridge system can be expressed as

Mvv 0

0 Mbb

" #
€Xv
€Xb

n o
þ

Cvv Cvb

Cbv Cbb

" #
_Xv
_Xb

� �
þ

Kvv Kvb

Kbv Kbb

" #
Xv

Xb

( )
¼

Fv

Fb

( )
(3)

where Mvv, Kvv and Cvv are, respectively, the mass, stiffness and damping matrices of the train; Cvb, Kvb, Cbv and Kbv are,
respectively, the train–bridge interaction matrices; Xv and Xb are, respectively, the displacement vectors of the train and
the bridge; Fv and Fb are, respectively, the force vectors acting on the train and the bridge. The computation of these
matrices is described in detail by Xia and Zhang [26], and Zhang et al. [27].

Due to the coupling effects between the wheel-sets and the bridge, the generalized stiffness and damping matrices of
the bridge, as deducted by Xia and Zhang [26], can be written as follows:

Kbb ¼KbþK� ¼Kbþ
XNv

i ¼ 1

X2

j ¼ 1

XNwi

l ¼ 1

fmwijlv
2HT
ðxijlÞHxxðxijlÞþmwijlaHT

ðxijlÞHxðxijlÞ

þkv
1ijH

T
ðxijlÞHðxijlÞþcv

1ijvHT
ðxijlÞHxðxijlÞg (4)

Cbb ¼ CbþC� ¼ Cbþ
XNv

i ¼ 1

X2

j ¼ 1

XNwi

l ¼ 1

½2mwijlvHT
ðxijlÞHxðxijlÞþcv

1ijH
T
ðxijlÞHðxijlÞ (5)

where K� and C� are, respectively, the additional stiffness and damping matrices of the wheel-sets on the bridge; H(x) is the
interpolation function matrix [28]; Hx and Hxx denote the first and the second derivative with respect to x of H(x),
respectively; v and a are the moving speed and the moving acceleration of the train in the X direction, respectively; mwijl is
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the mass of the wheel-set; kv
1ij and cv

1ij are the spring coefficient and the damping coefficient of the first suspension system,
respectively; Nv is the total number of vehicles in the train; Nwi is the total number of wheel-sets of each bogie.

When the model parameters and the external forces are known, the computation of the bridge responses is a forward
problem [26]. Eq. (3) can be solved by the Newmark direct integration method. The displacement, velocity and acceleration
responses of location x at time t can be interpolated from the computed nodal responses.
3. Dynamic response sensitivity analysis

3.1. Damage index definition

Except for some special cases, it is usually assumed that damage does not change the mass but the stiffness of the
structure [11]. The damage index of the bridge can be defined as the relative reduction ratio of the element stiffness. If the
relative damage index and the stiffness of the jth element in the reference state are, respectively, aj andðEIÞjrefer, its stiffness
in the damaged state can be expressed as

ðEIÞd
j
¼ ðEIÞjreferð1�a

jÞ ð0rajr1,j¼ 1,2,. . .,NÞ (6)

where N is the total number of the bridge elements.
3.2. Sensitivity of response with respect to damage index

For a perturbation of the system parameters, the perturbed equation of motion is obtained by differentiating both sides
of Eq. (3) with respect to the system parameter [22]. Assuming the damage index is related only to the stiffness of the
dynamic system, the following differentiation equation can be obtained:
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It can be seen from Eqs. (4) and (5) that K* and C* are independent of aj, and Mbb, Mvv, Cvv, Kvv, Cvb, Kvb, Cbv, Kbv, Fb and Fv

are independent of aj [26], so the following equations are valid, when considering Eq. (1):
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(8a)
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Then Eq. (7) can be simplified as
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It can be observed that the velocity response _Xb and the displacement response Xb, obtained from Eq. (3), are the input
data for Eq. (9). As a forward problem, the response sensitivities of the nodes can also be obtained from Eq. (9) by the
Newmark direct integration method. The response sensitivities of any point with coordinate x can be computed by the
following equations:

@uðx,tÞ

@ðajÞ
¼HðxÞ

@Xb

@ðajÞ
(10a)

@ _uðx,tÞ

@ðajÞ
¼HðxÞ@

_Xb

@ðajÞ
(10b)

@ €uðx,tÞ

@ðajÞ
¼HðxÞ@

€Xb

@ðajÞ
(10c)



J.W. Zhan et al. / Journal of Sound and Vibration 330 (2011) 757–770 761
4. Inverse problem solution for damage index vector

The identification problem is to find the damage index vector A¼ fa1,a2,. . .,aj,. . .,aNg
T

of the system based on the
condition that the calculated responses best match the measured ones. The identification procedure is as follows:

Step 1: Update the reference finite element model of the bridge with the identified damage index vector Ak of the kth
iteration step (the initial damage is usually assumed to be zero, i.e. A1=0), to get (Kb)k and @ðKbÞk=@a

j
k. The displacement

response vector (Xb)k and the velocity response vector ð _XbÞk can be calculated by Eq. (3). By substituting (Xb)k, ð _XbÞk and
@ðKbÞk=@a

j
k into Eq. (9), ð@Xb=@a

j
kÞk can be calculated.

Step 2: Calculate the response uk
s ðtiÞ of the sth (s=1, 2,y,NP) measurement point at the ith (i=1,y,NM) time step and its

sensitivity @uk
s ðtiÞ

@aj
k

by interpolation from the nodal ones. Then construct the time-varying sensitivity matrix
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where NM is the total number of time steps and NP is the total number of measurement points.
Using the penalty function method [29], the sensitivity equation for damage identification can be expressed as

Sk
s �DAk ¼DUk

s (12)

where DAk ¼ fDa1
k ,. . .,Daj

k,. . .,DaN
k g

T
is the perturbation in the damage index vector at the kth iteration step;

DUk
s ¼ fu

k
s ðt1Þ�û

k
s ðt1Þ,. . .,u

k
s ðtiÞ�û

k
s ðtiÞ,. . .,u

k
s ðtNMÞ�û

k
s ðtNMÞg

T
is the discrepancy between the calculated displacement re-

sponses and the measured ones; the superscript 4 denotes the measured responses.
In theory, the sensitivity matrix of any single measurement point can be used for identification. For a bridge structure

with N elements, the used response number NM must be far bigger than N to make sure that the set of Eq. (12) is over-
determined. Eq. (12) can be solved by the least-squares method

DAk ¼ ½ðS
k
s Þ

TSk
s �
�1ðSk

s Þ
TDUk

s (13)

Like many other inverse problems, Eq. (13) is an ill-conditioned system of equations and the solution is unstable. In
order to provide bounds to the solution, the damped least-squares method developed by Tikhonov [30] and the singular
value decomposition technique are used in the pseudo-inverse calculation. Eq. (13) can be written in the following form:

DAk ¼ ½ðS
k
s Þ

TSk
s þlI��1ðSk

s Þ
TDUk

s (14a)

where l is the non-negative damping coefficient governing the participation of least-squares error in the solution. The
solution of Eq. (14a) is equivalent to minimizing the function

JðDAk,lÞ ¼ :Sk
sDAk�DUk

s:
2
þl:DAk:

2
(14b)

where the second term in Eq. (14b) provides bounds to the solution. When the parameter l approaches zero, the estimated
vector DAkapproaches the solution obtained from the simple least-squares method.

Many methods, for example, the L-curve method, have been developed to get the regularization parameter l. Hansen
[31] designed a free Matlab package for analysis and solution of the discrete ill-posed problems basing on the L-curve
method. This method is here used to obtain the optimal regularization parameter l.

Once the increment in the damage index vector is obtained from Eq. (14a), the updated damage index vector can be
expressed as

Akþ1 ¼AkþDAk (15)

Step 3: Repeat steps 1 and 2 to get the final value of the damage index vector. The following convergence criterion is
used:

:Akþ1�Ak:=:Akþ1:re (16)

where :U:means the norm of a vector, eis the allowable error (%).
For velocity or acceleration responses, the damage identification procedures are similar when the corresponding

sensitivity matrices are properly constructed.
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5. Train-induced response analysis of a damaged simply supported beam

A simply supported beam is used to analyze the influence of damage on the train-induced dynamic responses. As shown in
Fig. 2, the bridge is discretized into 15 beam elements. The parameters of the simply supported bridge are length 30 m, Young’s
modulus E=35.5 GPa, sectional area A=2.0 m2, moment of inertia I=1.4 m4 and mass per unit length m¼ 16,000kg=m.

The train used in the analysis consists of 4 identical vehicles whose parameters are shown in Table 1. In theory, the
evaluation procedure is effective if the train speed is the same before and after the bridge is damaged. Acceleration,
deceleration or moving at constant speed should be the same in both cases. However, for the ease of operation, the passing
speed of the train is usually controlled to be constant. In the present analysis, the train runs onto the bridge from the left
support and passes it at a constant speed of 30 m/s.

The natural frequencies of the car body and the bogie can be estimated from the following equations [32] as 1.05 and
6.38 Hz, respectively.

fvehicle ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ð1=kv
2
Þþ ð1=2kv

1
Þ

Mc

vuut ¼
1

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Mckv

2kv
1

2kv
1þkv

2

s
(17)

fbogie ¼
1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2kv

1þkv
2

Mt

s
(18)

where is Mc and Mt are the mass of the car body and the bogie, kv
1 and kv

2 are the spring coefficients of the first- and the
second-suspension system, respectively.

The elements of the bridge are assumed to successively suffer single damage with extents between 5% and 30%. At each
damage case, the dynamic responses of the bridge are calculated based on the train–bridge dynamic interaction model.

Shown in Figs. 3 and 4 are the displacement and the acceleration responses of the bridge midpoint when element 8
suffers different extents of damage. The distribution of maximum displacements of the bridge midpoint with respect to
element damage extent is shown in Fig. 5.

Fig. 3 shows that the midpoint displacements of the bridge increase when element 8 is more seriously damaged.
However, the differences between the accelerations before and after the damage are less obvious (see Fig. 4).

For the single damage case, the following observations can be made from Fig. 5:
(1)
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The maximum displacements of the bridge increase when the damage extends.

(2)
 When the damage extent keeps unchanged, the maximum displacement decreases with the distance of the damaged

element to the midpoint.

(3)
 For two elements symmetrically located to the midpoint, the same damage causes the same maximum displacement of

the midpoint.
e 1
parameters of the train vehicle used in the case study.

m Unit Value

ll length of vehicle (L) m 22.5

stance of bogie (2s) m 15.6

stance of two wheel-sets (2d) m 2.5

ass of vehicle body (Mc) kg 40,990

ass of bogie (Mt) kg 4360

ass of wheel-set (Mw) kg 1770

rtical stiffness of 1st suspension system (kv
1) kN m�1 2976

rtical stiffness of 2nd suspension system (kv
2) kN m�1 1060

rtical damping of 1st suspension system (cv
1) kN s m�1 15

rtical damping of 2nd suspension system (cv
2) kN s m�1 30

ass moment of inertia of car body around the Y-axis (Jcj) kg m2 1,959,000

ass moment of inertia of bogie around the Y-axis (Jtj) kg m2 1470
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Fig. 2. Layout of the simply supported bridge model.
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6. Numerical example of damage identification

6.1. Model layout

A three-span continuous bridge with spans of 25 m+25 m+25 m (see Fig. 6) is studied to illustrate the feasibility and
the efficiency of the proposed damage identification method. The bridge consists of 30 beam elements and 31 nodes, with
each node having 3 degrees-of-freedom. The parameters of the bridge are Young’s modulus E=35.5 GPa, sectional area
A=3.0 m2, moment of inertia I=0.84 m4, and mass per unit lengthm¼ 15,000kg=m. The same train as in Section 5 is used,
which runs onto the bridge from the left support and passes it at a constant speed of 20 m/s.

6.2. Measurement noise, track irregularity and identification error

The normally distributed random noise is added to the calculated response of the bridge to simulate the measurement
noise [21]

ym ¼ ycþepN0sðycÞ (19)

where is the ym and yc are the polluted response and the calculated one, respectively, ep is the ratio of noise amplitude to
the response amplitude (between 0 and 1), N0 is the standard normal distribution vector with a mean value of zero and a
unit standard deviation, s(yc)is the standard deviation of the calculated response time history, which indicates the
deviation of the response from its mean value. That is, if the mean value of the response is zero, s(yc) denotes the
amplitude of the response.

The track irregularity is introduced in Eq. (2) to link the displacements of the wheel-set and the bridge. In the United
States, the track irregularity spectra are divided into 6 grades [33]. The vertical displacement, velocity and acceleration
track irregularities are given by the following equations [26]:

ZsðxÞ ¼
Xns

i ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2SvðOiÞDO

p
cosðOixþfiÞ (20a)
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where is the ji is the random uniform-distribution phase between 0 and 2p;ns is the total number of harmonic functions, x

is the location of the wheel-set, O1 and Ou are, respectively, the lower and the upper bounds of the spatial angular
frequencies (rad/m), DO=(Ou�Ol)/ns, Oi=O1+(i�1)DO.

The power spectrum density is expressed as

SvðOÞ ¼
kAvO

2
c

O2
ðO2
þO2

c Þ
(21)

where k is the safety coefficient, Av is the roughness coefficient and Oc is the cut-off frequency (rad/m).
The relative error (RE) is used to evaluate the precision of the identified damage extent. It is defined as

RE¼ :Aid�Ar:=:Ar: (22)

where Aid and Ar are the identified damage index vector and the real one, respectively.
RE is an effective index to evaluate the precision of the damage quantification.
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6.3. Identification of single damage with different types of response data

Element 7 is assumed to be the only damaged element with a damage extent of 30%. The FE model of the bridge in the
undamaged state is known and used as the reference model. As shown in Fig. 6, three measurement points are considered,
whose distances from the left support of the bridge are10, 37.5 and 65 m, respectively. The displacement, velocity and
acceleration responses at these points are observed and used as the input data for damage identification. The grade-4,
grade-5 or grade-6 track irregularity spectra are considered in the train–bridge dynamic interaction analysis. 5% and 10%
noises are, respectively, added to the measured train-induced responses. A typical acceleration response of point 2 is
shown in Fig. 7. The sampling frequency is 200 Hz, and 1500 forced-vibration response data (NM=1500, from 0.5 to 8 s) are
used in the identification.

Listed in Table 2 are the identification results using displacement responses, velocity responses and acceleration
responses under the grade-4 track irregularity spectrum. Shown in Fig. 8 are the identified damage indices for different
Table 2
Identification results using different types of response.

Point no. Noise level (%) Displacement Velocity Acceleration

RE (%) a7 (%) Nt RE (%) a7 Nt RE (%) a7 (%) Nt

1 0 0.46 29.86 175 0.76 29.77 66 1.75 29.48 35

5 2.64 29.20 239 4.9 28.51 69 2.24 29.32 53

10 3.27 29.01 274 6.6 28.00 216 2.34 29.29 219

2 0 0.89 29.73 232 1.06 29.68 216 1.72 29.48 139

5 2.11 29.34 275 2.57 29.22 252 4.16 28.74 199

10 3.47 28.95 325 3.99 28.79 276 4.72 28.57 246

3 0 1.82 29.45 176 1.62 29.51 143 1.49 29.95 129

5 2.61 29.21 223 2.11 29.36 193 1.98 29.40 156

10 3.53 28.93 285 3.23 29.02 196 2.87 29.13 229

Nt is the iteration step number of damage index vector.

0
0.05

0.1
0.15

0.2
0.25

0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Element No

D
am

ag
e 

in
de

x

0% noise
5% noise
10% noise

Fig. 8. Damage identification using acceleration responses of point 3 at different noise levels.
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Fig. 7. Acceleration response of the bridge midpoint.
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noise levels using the acceleration response of point 3. The identified results using the acceleration responses (10% noise)
of different measurement points are shown in Fig. 9.

From Table 2, Figs. 8 and 9, it can be concluded that:
(1)
 The absolute damage of element 7 is well identified either using the polluted displacement responses, velocity
responses or acceleration responses.
(2)
 The identified results using the responses at different noise levels correspond to each other, but the needed number of
iterations and the identification error increase slightly with the noise level.
(3)
 The identified damage using the responses from either of the three points is close to the true value, indicating that the
location of the measurement point does not considerably influence the identification result.
Fig. 10 shows the damage indices at different iteration steps using the acceleration response measured at point 3 under
the grade-6 track spectrum. It can be seen that the damage indices rapidly converge to their true values. If the purpose is to
simply locate the damage, only a few iteration steps are needed.
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Fig. 10. Damage indices versus iteration step (10% noise).
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6.4. Identification of multiple damage

In the analysis, the initial FE model of the bridge is known and elements 5, 15 and 25 are assumed to simultaneously
suffer damage with extents of 20%, 40% and 30%, respectively. The grade-6 track irregularity is used, and 1%, 5%, and 10%
noises are, respectively, added to the measurement responses. The train and the measurement points are the same as in
Section 6.3. The acceleration response measured at point 1 with a sampling frequency of 200 Hz is used for damage
identification. For signals with noise, 300 response data are used, while 1000 for signals with noise. The identification
results using different measurement points are shown in Fig. 11. The identified damage indices using the responses at
different noise levels are presented in Fig. 12. The errors between the identified damage indices and the assumed ones are
listed in Table 3. Fig. 13 shows the convergence curves of the damage indices.
Table 3
Identification errors using different measurement points.

Measurement

Point 1 2 3

Noise level (%) 0 1 5 10 0 1 5 10 0 1 5 10

RE (%) 1.3 1.4 4.6 6.6 1.9 2.4 4.7 5.4 0.8 2.3 4.8 7.0
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In order to study the influence of track irregularities on the damage identification results, another damage case is
considered, where 30%, 20% and 40% reductions in stiffness are assumed in elements 3, 12 and 28, respectively. Track
irregularity spectra with grades from 4 to 6 are used, and 10% noise is added to the calculated responses. Fig. 14 shows the
identified results when the track exhibits different grades of irregularity. The errors between the identified damage indices
and the assumed ones are listed in Table 4.

From the above results, the following conclusions can be drawn:
(1)
Tabl
Iden

Irr

No

RE
The identified absolute damage indices using the responses of different measurement points correspond with each
other (see Fig. 11), showing that the location of measurement point does not influence the identification results very
much.
(2)
 The identified results are acceptable when the noise level is up to 10%, which shows that the proposed damage
identification method has a good ability of resisting noise (see Fig. 12). However, with the increase of noise levels, the
identification errors become somewhat larger.
(3)
 The damage indices converge quickly at the initial stage, and then change slowly towards the true values (see Fig. 13).
If the purpose is to simply locate the damage, only a few iteration steps are needed, saving a lot of computation time.
(4)
 Although the identification errors increase slightly when the track irregularities become larger, the detected damage is
still close to the true value (see Fig. 14), showing that the proposed method is not sensitive to track irregularities.
6.5. Damage identification without tuned FE reference model

If the initial FE model of the bridge in the undamaged state is obtained by the FE model updating technique using test
data [34], the identified damage by the proposed method is the absolute one. However, when only the FE model in an
already damaged state or in a state with some uncertainties regarding the FE model at time t1 is identified and taken as the
reference model, the identified damage at time t2 is the damage increment between the two states.

In the analysis, only the damaged state of the bridge at time t1 is known, in which elements 2, 6, 13 and 23 suffer
damage with extents of 0%, 10%, 15% and 10%, respectively. The absolute damage for elements 2, 6, 13 and 23 at time t2 is
assumed to be 10%, 15%, 30% and 20%, respectively.

The train and the measurement points are the same as in Section 6.3. The grade-6 track irregularity spectrum is used
and 10% noise is added to the measurement response. The sampling frequency is 200 Hz and 1000 forced-vibration
acceleration response data (NM=1000, from 1 to 6 s) of point 1 are used for damage identification. The identified damage
increment between time t1 and t2 is shown in Fig. 15.

It can be observed from Fig. 15 that:
(1)
 The sum of the damage in the reference state at time t1 and the identified damage increase is very close to the true
damage at time t2, showing that the proposed method is also effective for the identification of the damage increase
between two different states without prior knowledge of the damage at the first state.
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Fig. 14. Identified damage indices under different track irregularity grades (10% noise).
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(2)
 Although the measurement noise level is up to 10%, the assumed 5% and 10% increases of damage at element 6 and
element 2 are still well identified, which proves the robustness of the proposed damage identification method.
7. Conclusions and discussions

The following conclusions can be extracted from this paper:
(1)
 The dynamic responses of the train–bridge system and the sensitivity matrices of the dynamic responses with respect
to the damage indices can be calculated by the train–bridge dynamic interaction model. An iterative updating
procedure using the train-induced responses and the response sensitivity matrices is proposed to locate and quantify
the damages of railway bridges.
(2)
 Only one measurement point is needed to detect the relative or absolute damage of the bridge. The location of the
measurement point does not influence the identified results much.
(3)
 The proposed damage identification method has a rather good stability against measurement noise. The identified
results are acceptable even for a noise level up to 10%.
(4)
 The proposed damage identification method is insensitive to the track irregularity.
Although the efficacy of the proposed damage identification method is good in theory, when it is used in practice, the
following aspects should be considered:
(1)
 The considered train should be the same and run at the same speed before and after the bridge is damaged to ensure
that the loads acting on the bridge are the same.
(2)
 Disturbing environmental influences, such as wind and temperature, must be minimized. For example, the experiment
should be conducted under similar wind speed and temperature conditions before and after the bridge is damaged.
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